
IATMICPANN OFMNLTRTANSEOVMNSA96 118 MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTE--ETC F/G 13/9

DEC 80 T LOZANO-PEREZ N0001-77-C-0389
UNCLASSIFIED AI-NA602 NL

Emhhllllllllll
m B~ hE~E

NIEIIhElhlllllI

UNCLASSIFIEDI 4 9
* *SECURITY CLASSIFICATION OFTNi iIsn..tr)___________________

REPOT DCUMNTATON AGEREAD INSTRUCTIONSREPOT DCUMNTATON AGEBEFORE COMPLETING FORM
I REPORT NUMBER 2. GOVT ACCESSION NO. 3. RI NT'S CATALOG NUMBER

Al Memo # 6 0 6 ~ 4?
-XTITLE (and Subtitle) 1. Typ-eor REPOWr aP~ro00C jVtREO

Automatic Planning of Manipulator Transfer ~ Mmrnu
Movements, 6. PERFORMING ORG. REPORT NUMBER

Iyli'%iTHR(@ &._.4WOTRACT OR GRANT NUMBER(s)

TasL'ozano-Perez N 001 4-77-C-,,6389Y

9 -PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
A. AREA & WORK UNIT NUMBERSArtificial Intelligence Laboratory

545 Technology Square
Cambridge, Massachusetts 02139

It. CONTROLLING OFFICE NAME AND ADDRESS 'I.RPOTDE
mt Adva nced Research Projects Agency D/ ecooft 1J60o

1400 Wilson Blvd 11. NUMBER OF PAGES

I< Arlington, Virginia 22209 49____________
14 MONITORING AGENCY NAME & AOORESS(If different from Controlling Ollie*) IS. SECURITY CLASS. (of thlIs ~pon,

Off ice of Naval Research ,' UNCLASSIFIED
Information Systems a*, ~, ______________

Arlington, Virginia 22217 / ~ S ICDULE WNRAI

16, DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract mItered in Block 20, It different frog" Report)

IS. SUPPLEMENTARY NOTESE

None MR O18

19. KEY WORDS (Continua on reverse side It necessary and Identify by block nu.mber)

Robotics
Collision Avoidance
Path Planning

SGrasping

29* -ABSTRACT (Continue on rovers* side It necessary mid identify by block number)
c~eD This paper deals with the class of problems that involve finding where to
W place or how to move a solid object in the presence of obstacles. The
._J solution to this class of problems is essential to the automatic planning of

ti-semanipulator transfer movements, i.e. the motions to grasp a part and place
it at some destination. This paper presents algorithms for planning

manipulator paths that avoid collisions with objects in the workspace and fo
choosing safe grasp points on objects. These algorithms allow planning
transfer movements for cartesian manipulators, The anorgach is basePd nn 1

DD JA 7 1413 EDITION OF I NOV 65 IS ODSOLETIE UNC LASS IF IED .

SIN 0.102-014-6601 1
SECURITY CLASSIFICATION OF THIS PAGE (N'hen Data ~rterd)

20. ,a method of computing an explicit representation of the manipulator configurations
that would bring about a collision [27].

-- I

/A

MASSACI I USFrrS INSIl ILYlT O1 'I(CI INOLOGY

ARTIICIAI. IN'1I',] .I.(iFNCL I.AIIORA rORY

A.I. Nleino No. 606 IDece,,ilr, 1980

Automatic Planning of Manipulator Transfer Movements

1 0
Tomas I .ozano-Pcrez

ABSTRACT. This paper deals with the class of problcms that involv finding where to place or how

to move a solid object in the presence of obstacles. The solution to this class of problems is essential

to the automatic planning of manipulator transfer movements, i.e. the motions to grasp a part and

place it at some destination. This paper presents algorithms for planning manipulator paths that

a'oid collisions with objects in the workspace and for choosing safe grasp points on objects. Ihese

algorithms allow planning transfer movements for cartesian manipulators. The approach is based on

a method of computing an explicit representation of the manipulator configurations that would bring

about a collision [271.

Acknowledgenenis. This report describes research done at the ArtificiAl Intelligence Laboratory of the

Massachusetts Institute of Technology. Support for the laboratory's artificial intelligence research is

provided in part by the Office of Naval Research under Office of Naval Research contract N00014-

77C-0389.

3 09 027

Inproduclion

1. Introduction

An important goal of research on programming languages for computer-controlled manipulators

is a language in which assembly operations can be concisely described. Two major approaches to

manipulator programming have been identified [341:

1. Explicit programming - in which die user specifics all die manipulator motions needed to

accomplish a task.

2. Model-based programming - in which the user specifics geomctric models of parts and a

description of the task in terms of these models. The detailed manipulator motions arc derived

by die assembly system from these specifications.

This paper presents algorithms for some of the central geometric problems that arise in the model-

based approach to manipulator programming. In particular, this paper deals with the class of

problems that involve finding where to place or how to move a solid object in the presence of

obstacles. The solution to this class of problems is essential to the automatic planning of manipulator

transfer movcments, i.e. the motions to grasp a part and place it at some destination. For example,

planning transfer movements requires the ability to plan paths for the manipulator that avoid colli-

sions with objects in the workspace and die ability to choose safe grasp points on objects. The ap-

proach to these problems described here is based on a method ofcomputing an explicit representation

of the manipulator configurations that would bring about a collision [27].

Several model-based manipulator systems have been described in the recent literature: Al. 1101

1461, Autopass 124][281 (501, LAMA [2511261 and RAPT [38] 13911401. These are experimental systems,

currently under development' . Work on the model-based aspects of Al. has focused on techniques

for making coding decisions in manipulator programs. 'Ie decisions are made among a fixed set of

strategies so as to minimize estimated execution times and so as to bring estimates on the accuracy

of part positions within specified bounds. A central technical issue in this approach is deriving the

accuracy estimates from geometric relationships and local accuracy information. RAlI' has focused

on the specification of manipulator programs by specifying the desired symbolic spatial relation..

ships among objects. These relations are then translated into algebraic constraints on the position

'The AL language, as originally described, includes explicit as well as model-based programming capabilities. The former
are currently available, while the latter are still in the experimental stage.

2 the "Pick and Place" Synthesis Problem

parameters of the objects, which can be solved by symbolic manipulation. lhcse algebraic solution

techniques are also used to complete the specification of partially spccified actions so as to achieve

the desired relationships. Implementation work on I.AMA and Autopass has focused on techniques

for planning collision-free motions, e.g. grasping and parts transfer motions, using polyhedral object

models. The techniques reported in this paper are extensions tf the Autopass obstacle avoidance

algorithm and ILAMA's grasping strategies.

A number of important problems relevant to model-based manipulator programming have been

addressed independently of any manipulator system, for example the problem of specifying com-

pliant motion strategies based on geometric and kinematic models of a task [30], the selection of

grasping positions 1511 311 1351 1511, and the problem of collision detection and collision avoidance

among obstacles 131171112113311471.

The algorithms discussed in this paper arc based on previous work on obstacle avoidance algo-

rithms. In particular. 1481149] first formulated the obstacle avoidance problem in terms of an obstacle

transformation which allows treating the moving object as a point. A similar transformation was also

used in [] 121 1411 451 for the template layout problem: related applications arc also discussed in [111

1161. Generaliations of these obstacle transformation techniques and a review of related work can be

found in 1271 and 1281. Other approaches to automatic obstacle avoidance are reviewed in 12311481.

2. The "Pick and P'lace" Synthesis Problem

The most common transfer movements are of the "pick and place" type, consisting of (1) moving

the manipulator from its current configuration2 t) a grasp configuration on some object, P, (2) grasp-

ing P, and (3) moving P to some specified configuration. The "pick and place" synthesis problem is

that of deriving the manipulator motions that will carry out a "pick and place" transfer movement,

given as input the following data:

1. a geometric description of the manipulator and the objects in the workspace,

2. the current configurations of the manipulator and the objects in the workspace,

2Configurotion will be used here to refer to the combined position and orientation of an object as well as to the at
of joint parameters specifying the arrangement of manipulator links.

411

3 ihe "Pick and Place" Synthesis Problem

3. the desired final configuration of P, and

4. (Optional) the grasp configuration on P.

This paper focuses on the geometric aspects of the "pick and place" synthesis problem. For

example, when the grasp configuration is known, the "pick and place" synthesis problem is equivalent

to finding collision-free paths for the manipulator and P betwcen the configurations in items 2, 3

and 4 above: when the grasp configuration is unknown, there is the additional task of choosing a

configuration such that:

I. the manipulator's fingers are in contact with P.

2. the manipulator does not collide with nearby objects,

3. the configuration is reachable, and

4. the object is stable in the manipulator's hand.

''he first three conditions reflect geometric constraints on the manipulator configuration, relative to P

and to other objects in the workspace. The stability condition rcflccts aspects of grasping beyond the

purely geometric, but when P is small relative to the manipulator hand and when parts mating effects

are ignored, then stability considerations can typically be reduced to geometric heuristics (see Section

9.6).

The geometric aspects of "pick and place" can be formulated in terms of two fundamental spatial

planning problems [27], Findspace and Findpath, which occur in many applications. The definition of

these basic problems are presented below for the case of polyhedral objects.

Let R be a convex polyhedron that bounds the workspace and which contains ka other, possibly

overlapping, convex polyhedra Bj designated as obstacles. Let A, the object being moved, be the

union of kA convex polyhedra Aj, i.e. A = U=I Ai.

i. Findspace - Find a configuration for A, inside R, such that ViVj: Ai n Bi = 0. This is

called a saf' configuration.

2. Findpath - Find a patlh for A from configuration a to configuration g such that A Is always

in R and A never overlaps any of the Bi . Ibis is called a safi path.

4 The (sprxt Approach to Spatial Planning: Overview

Clearly, "pick and place" with known grasp configuration can be viewed as a sequence of two

Findpath problems. In addition, the configurations which are legal candidates for grasping can be

derived from solutions to the Findspacc problem.

The reduction of the "pick and place" problem to these more fundamental geometric problems

assumes that the locations of all objects are known to high accuracy and that the path of the

manipulator can be controlled to the samc precision. In a realistic environment, there is always uncer-

tainty in the positions of objects and error in the control of the manipulator. Section 10 discusses the

effects of uncertainty.

3. The Cspace Approach to Spatial Planning: Overview

In this section. an overview of the Configuration Space approach to spatial planning will be

presented: further details can be found in [271.

The position and orientation of a rigid solid can be specified by a single 6-dimensional vector,

called its configuration. 'Tlie 6-dimensional space of configurations for a solid, A, is called its

Configuration Space and denoted Cspace.A. For example, a configuration may have one coordinate

value for each of the x, y, z coordinates of a selected point on the object and one coordinate value for

each of the object's Euler angles 121]. In gcneral, an n-dimensional configuration space can be used

to model any system for which the position of every point on the object(s) can be specified with n

parameters. An example is the configuration of an industrial robot with njoints, where n is typically 5

or 6. In CapaCeA, the set of configurations of A where A overlapsB, i.e. A fl B Y 0, will be denoted

COA(B). the CspaceA Obstacle due to B. Similarly, those configurations of A where A is completely

inside B, i.e. A C B, will be denoted CIA(B), the CapaceA Interior of B. Together, these two

CapaceA constructs embody all the information needed to solve Findspace and Findpath problems.

Note that C14(B) = -COA(-B), where -X denotes the set complement of X in R.

3.1. Fixed Orientation ofA

In two dimensions, if the orientation of a convex polygon A is fixed, CspaeA is simply the (x, y)

plane. This is so because the (x, y) position of some reference vertex rv4 is sufficient to specify the

fhe ('spact Approach to Spatial Pllanning: Overview

rvA
II

Figure I. The (MICCA obstacle due to H. for fixed orientation of A.

polygon's configuration. In this case, the presence of aiiol~e% convex polygon B constrains rVA to

be outside of COA(B), a larger convex polygon. shown as the shided region in Figure 1. Since

CO i(B), in this case, is a set of(x, t) values, it is denoted COQU'(B). Similarly, if A and B are three-

dimensional polyhedra in fixed orientations, then the C8pace obstacles are denoted COA'yz(B). Thus,

the Findspace problem for polygons, with fixed orientation, can be transformed to the equivalent

problem of placing rvj outside of CO'll(B), but inside CJR'(R). Similarly, for multiple obstacles Bj,

a location forA is safe if and only if rvA is not inside any of the CO A (Bj), but is inside CIA'r(R).

If the orientation of A is fixed, then the Findpath problem for the polygon A among the B is

equivalent to the Findpath problem ror the point rvA among the CO:"(Bj). When the COV(B)

are polygons, the shortest ' safe paths for rv. are piecewise linear paths connecting the start and the

goal via the vertices of the COj'Y(B) polygons, Figure 2. 'Ihereforc. Findpath can be formulited as a

graph search problem. The graph is formed by connecting all pairs of vertices of Cap0ceA obstacles

(and the start and goal) that can "see" each other, i.e. can be connected by a straight line that does

not intersect any of the obstacles. The shortest path from the start to the goal in this visibility graph

l'nis assumes Euclidean distance as a metric. For the optimality onditions using a rectilinear (Manhattan) metric, see
[22].

6 The ('Uspa Approach to Spatial Planning: Overview

Figure 2. This figure illustrates the Jindpath pvoblem and its formulation using Cslxwc obstacles. Note
that the shortest collision-free paths coknnect the origin and the destination via the %ertices of the CBPa A
obstacles.

(Vgraph) is ie shortest safe path for A among the Bj 128]. This algorithm solves Findpath problems

when the orientation of A is fixed. But, becatise they require moving A along obstacle boundaries,

shortest paths are very susceptible to inaccuracies in the object models.

The approach to Findspace and Findpath described above generalizes to problems involving

three dimensional polyhedra with fixed orientation. The generalization requires the use of a three-

dimensional Capace,, representing the space of (x, y, z) positions of rV4 . In this Capace, the

obstacles are also polyhedra. denoted COA': (B). However, the Vgraph algorithm has several addi-

tional drawbacks when the obstacles are three-dimensional:

I. Shortest paths do not typically traverse the vertices of the COA5 z(Bj).

2. There may be no paths via vertices, within the enclosing polyhedral region R, although

other types of safe paths within R may exist.

'Tlicse drawbacks may be alleviated by introducing additional nodes in the Vgraph which do not

correspond to vertices 1281. An alternative strategy for finding safe paths among two- or three-

dimensional CopaceA obstacles is discussed in Section 7.

7 'I1c (y wt .\l pprlch it Spalrd l a'Ia i : O.crx,;c

3.. Algoriihnisl/.r CO'(B)

The central operation in the Cspace approach to Findspace and I'indpath in two and three

dimensions is computing CO!'(13) and CO""(B) respectively. IfA aond B are convex polyhedra, it is

simple to show 1271 that

CO"-(B) = B e (A)o = conv(vert(B) e vert((A)o))

%here conv(X) is the convex hull of X 1141, vert(X) is thc set oli vertices of the polyhedron X,

X e Y = { x - y I x C X and y G Y } and (X)1 means the -polyhedron X in its initial

configuirations, where rv.\ is at the origin. This result and the existence of O(n log n) convex hull

algorithms for finite sets of points in [[41], lead directly to an O(v " log v) algoridm for CO Y'2 (B),

where v = Ivert(A)l + Ivert(B)I. The result also holds when A and 11 are convex polygons, but more

efficient algorithms exist for this case. In particular. an O(v) algorithm for CO "(B) is described in

[271.

3.3. Variable Orientation of A

When A is a three-dimensional solid which is allowed to rotate, CO(B) is a complicated curved

object in a six-dimensional Cspace,. Rather than compute these objects directly, the approach taken

here is to use a sequence of two- and three-dimensional objects to approximate the high-dimensional

CapaceA obstacles. In particular, a six-dimensional Csopace4 obstacle for a rigid solid can be ap-

proximated by projections of its (z, y, z)-slices. A j-slice of an object C C R1 is defined to be:

Where "yj and _Y are the lower and tipper bounds of the slice, respectively. 111en, if K is a set of

indices between I and n, a K-slice is the intersection of all the j.slices Ibr j E K. Notice that

a K-slice of C is an object of the same dimension as C. Slices can then be projected onto those

coordinates not in K to olbain objects of lower dimension.

Figure 3 shows a two-dimensional example of slice projection. 'I lhe objects shown shaded repre-

sent the (x, y) projection of three 0-slices ofCOA(B) when A and ! are convex polygons. These slices

8 [he ('sijxri Approach to Spatial Planning: Overview

I I

ab

Figire 3. Slice projeclions of CspA obstacles computed using the (r, y)-arca swept out by .A over a
rangc of 0 %alu, Iach of the shaded ohstacles is the (1-, y)-projection of a 0-slice of ('0,%(I). The figure
also shows a pol)gonal ipproximatioi io the slice projection and the polygonal approximation to the swept
,olunie from which it derives.

represent configurations where A overlaps B for some orientation of A in the specified range of 0.

In [27] is a proof that these slice projections arc equivalent to the CO 1 of the area (volume) swept

out by A over the range of orientations of the slice. Note that approximating the swept volume as a

polyhedron leads to a polyhedral approximation for the projected slices of the Cspace1 obstacles, as

shown in Figure 3.

Slice projection has two important properties:

1. A solution to a Findspace problem in any of the slices is a solution to the original problem,

but since the slices are an approximation to the CspaceA obstacle, the converse is not neces-

sarily true.

9 *ihc ('spt App oach to Spatial Planning: O~erview

I A 3

A2

Ai

Figure 4. An illustration of the Findpath algorithm using shce projection described by l.ozano-Perez and
Wesley in [281. A number of slice projections of the ('sii , ottaclcs are constructed for different ranges
of orientations of A. [he problem of planning safe paths in &le high-dinensional ('sIXICiA is decomposed
inio (I) planning safe paths Nia ('O vcrtices within eich stict proj cion and (2) moving between slices, at
configurations that are safe in both slices. .11 repiesenis I in its initial conliguration. .43 represents A in its
linal configuration and .12 is a simple polyhedral approxmalton to the swept volume of A between its initial
and final orientation.

2. The shce projection of a Cspce, obstacle can be computed, by using the swept volume

operation, without having to compute the high-dimensional CspaceA obstacle, see Section 5.

When rotations of A are allowed, the slice projection operation can be used to extend the Vgraph

algorithm described earlier to find safe (but sub-optimal) paths [28]. A number of slice projections

of the CspaeA obstacles are constructed for different ranges of orientations of A. The problem of

planning safe paths in the high-dimensional CspaceA is decomposed into:

I. planning safe paths via the vertices of Capacei obstacles within each slice projection, and

2. moving between slices, at configurations that are safe in both slices.

r!
10 Findpah for Cartesian Manipulators

A

CT

T

A

B

C

Figure 5. Models or objects are Nruciured as trees of convex polyhedra: internal nodes represent the union
of their sub-trees Linked polyhedra are used to repr sent manipulators: internal nodes represent joints and
the leaes represent links. Mbe nestilg of sub-trees in the models of linked pol.hcdra reflect the cascading
clect of joint motions.

Both of thcse types of imotons can be modelled as links in the Vgraph, therefore he complete algo-

rithm can be formulatcd as a graph search problem. "l1his approach is illustrated in Figure 4. However,

since the obstacles are three-dimensional, the Vgraph algorithm is subject to the drawbacks described

earlier.

4. Findpalh for Cartesian Manipulators

This section overviews an implcmentation 4 of he Findpath algorithm, for cartesian manipulators

(see definition below). Sections 5 through 8 present a more detailed description of the implementation.

The system inputs are:

4 lbe current implementation is written in LISP for the MIa LISP Machines.

1] lidpath for Canersian Manipulators

94Y74

2 --7

Figure 6. A schcmatic representation of the link arrangement in two types of exisling cartesian manipulators.

1. A polyhedral model of the workspace - where each object is represented by a tree of

convex polyhedra, see Figure 5(a).

2. A polyhedral model of the manipulator - represented as a set of link bodies connected by

rotary or prismatic joints, see Figure 5(b).

3. A kinematic model of the manipulator - currently, partly embedded in procedurc which

apply to the polyhedral model and partly in the model structure.

4. A start and a goal configuration for the manipulator.

The system output is a safe path from the start to the goal configurations of the manipulator. The

paths are composed of a sequence of linear segments in the Cepace of the manipulator.

'he implementation described here is limited to cartesian manipulators, i.e. those having three

*1

12 (onlputI the ("p"wtA Obstacles

perpendicular translational degrees of freedom corresponding to the x, y and z axes and up to three

rotary degrees of freedom, usually centered at the wrist. Figure 6 illustrates two different types of

cartesian manipulators. The restriction to cartesian manipulators allows the use of the CO 1Iz(B)

algorithm described in Section 3.2 as the main tool for capturing path constraints.

The Findpah algorithm carries out the following steps in turn:

I. Constructing the Capace obstacles - The slice projections of tie CspaceA obstacles

approximate the constraints on the configurations of the manipulator due to the presence of

objects in the manipulator's % orkspace, see Section 5.

2. Representing free space - Once the Cspace obstacles are known, the system computes

a decomposition of the space outside these obstacles into convex polyhedral cells; these

polyhedra are then linked into a graph structure called the Free Space Graph. Each node of the

graph represents a free space cell and a link between cells indicates that they touch or overlap,

see Section 6.

3. Searching for a safe path 1- le Free Space Graph is searched to locate a cell path, a

connected set of free space cells that join the origin and the destination. From the cell path, the

system derives a line path, a piecewise linear path in the manipulator's Capace, see Section 7.

5. Computing the CspaceA Obstacles

The first and most important step in the Findpath algorithm is that of computing the CapaceA

obstacles arising from the presence of objects in the workspace. The Cspace1 currently used by the

system is the seven dimensional joint space of the manipulator, i.e. z, y, and z displacements, the

three wrist rotations and the finger opening. The CspaceA obstacles are complicated objects in this

high-dimension space. To avoid having to deal directly with these objects, the system makes use of

slice projection to approximate the Cspace.1 obstacles by a set of three-dimensional obstacles.

The COA"'(B) algorithm of Section 3.2 computes an (z, y,z) cross-section of COA(B) for a

specified orientation of A. But, this algorithm can be adapted to compute the (z, y, z)-slice projections

of CO, t(B). The construct that jelates slice projections to the cross-sections is the swept volume of

an object. The swept volume of A is the union of (A)., i.e. A in configuration a, for a within the

13 ("ompuling lt ('sli 'c I Obstact'..

configuration range denoted by 1c, cl,. where c and c' are configurations of A and K is a subset of

the configuration parameters. A configuration a is in the range [c, c'], if. for each i in K, the i"'

par,,mcter of a is bcl ccn the it" parameters of c and c. For cxample, if c and d are of the form

(31, 02,3.) and K = {3). then the swept volume of A o% er the range 1c,,c'lh refers to he union of

A over ., set of configurations differing only on 3j. The swept %olune of A over this configuration

range is denoted Ae, ell,. It can be shown [271 that the (x, y, z)-slice projection of COA(B) over the

orientation range contained in [c, c'11, is the same as CO.4, ,IK(B).

In summary. the computational requirements of the slice projection technique are:

1. Choosing a decomposition of the orientation ranges of the cartesian manipulator into sub-

ranges, [c, dl, to be used for slice projection.

2. Computing polyhedral approximations to Ate, d], for each orientation range.

3. Computing CO',.,, K(Bj) for each obstacle Bj and each orientation range.

This section addresses these issues. First we assume that the orientation ranges defining the slices are

given; the discussion of choosing slice parameters will be taken up at the end of the section.

5. . Computing the Swept Iolume for Linked Polyhedra

The swept volume of a polyhedron A over a range of translations is another polyhedron. Let

T C I be the set of configuration parameters corresponding to the translations of A. If A is a convex

polyhedron and the range of positions of the reference vertex of A over the range of translations

[c,C/]K can be represented as a convex polyhedron V, then Alc, C']T = A ED V where X 6) Y =

{ + I z e X and y E Y }. Since A E) V = conv(vert(A) (D vert(V)), this leads to a direct

algorithm for computing the swept volume for translation. If the range of configurations includes

rotations then the swept volume is not a polyhedron. In the rest of the paper it is assumed that

a polyhedral approximation to the swept volume is always available. 'he Appendix describes an

algorithm to compute a simple approximation to the swept volume of a convex polyhedron under

pure rotation.

The swept volume of A, a rigid object, resembles another rigid object with the same number

of degrees of freedom. But for manipulators, modelled as linked polyhedra, the situation is more

14 Couitingll Ihe ('mptut Obstalcles

I"02 -1- A2

~ 2 A3

a b

Figure 7. (hanges in the second joint angle from O to 0' causes changes in the configurations of both link
,+2 and link A 3.

complex. L.inked polyhedra are kincmatic chains with polyhedral links and prismatic or rotary joints.

I'e rela ive position and orientalion of adacent links, A, and A,-+. is determined by the i th joint

parameler (angle) 1361. The set of joint parameters of a linked polyhedron completely specifies the

position and orientation of all the links.

Note that for a linked polhcdron, the position of link j typically depends on the positions of

links k < j, which are closer to die base than link j. Let K = {}, c = (0), d = (OY), and 1c, C'i<

define a range of configurations differing on the j"b CspaceI parameter. Since joint j varies over a

range of values, links I > j will move over a range of positions which depend on the values ofc and

cl, as shown in Figure 7. The union of each of the link volumes over its specified range of positions is

die swept volume of the linked polyhedron. The swept volume of links j through n can be taken as

defining a new jlh link. The first j - I links and die new j" link define a new manipulator whose

configuration can be described by the first j - I joint parameters. On the other hand, the shape of the

new link .j depends not only on the K-parameters of c and c, i.e. 0, and #., but also on A for I > j.

"rhis implicit dependence on parameters of c and dc that are not in K is undesirable, since it means

that the shape of the new .Lh link will vary. Letting K {j,.., n}, then the shape of the swept

volume depends only on the K-parameters of c and c, while its configuration is determined by the

(I - K)-parameters. A swept volume that satisfies this property is called displaceable.

15 Computing the ('SIXMA Obstacles

A2 A3

Al

A A3 c.c'J

K= (A.uA2)IC.C1

Figure 8. Compuling the swept volume for linked pol)hcdra. If [e,c'. involves ranges of configurations of
the second and third link, first compute the swept olune for the third link and then the swept volume for
the union of the second link and the swept volume of the third link.

Given an operation for computing (a polyhedral approximation to) the swept volume of a

polyhedron, see Appendix, then this operation is applied to computing the swept volume of linked

polyhedra. The swept volume Ale, ClK is computed by tie following process. illustrated in Figure 8:

1. Let i = n, where n > 0 is the number of links in die linked polyhedra, II = n; let

A* = 0:

2. Place A in configuration c;

3. LetA*=A*UAi;

4. Ifi G K then let A = A°fc, cd{q, i.e. update A to be the swept volume of A over the

range of Lh joint;

5. Let i = i - 1. lfi = 0 then stop, else go to step 3.

16 Computing the ('spac A Obstacles

The swept volume obtained in this fashion can then be used to compute diec

.5.2. ('omputing slice projections for Capace obstacles

If Aic, c1l, overlaps some obstacle B then. for some configuration a in the range [c, C'],, (A).

overlaps B. I'hc converse is also true. If Alc, cl,, is displaccable, then CO.%j[sj,,(B) is the set of

I - K projections of those configurations of A within [c, c1], for which A overlaps B. Fquivalently,

CO A,..,,l, (B) is the I - K projection of the 1c, c'j, slice ofCO.(B). IfA is a cartesian manipulator

and K is the index set for the wrist rotations of the manipulator, then the configurations of the swept

volume arc the (z, y, z) positions of some point on the manipulator. The algorithm of section 3.2 can

be used to compute CO'1,, (B) and thereby compute the required slice projections of COA(B).

Given the swept volume of the manipulator model for a particular range of parameters [c, dIK,

the next step is to compute the slices of all tie Cspace obstacles for the manipulator over that range

of configurations: this set is denoted COS[c, c]. In previous discussions of the CO,""(B) algorithm

we have assumed that A and B were single polyhedra: we saw in the previous sections that both

the object and manipulator models are structured as part trees, whose leaves are convex polyhedra.

The actual model of a manipulator or a part is the union of the fringe, i.e. die set of leaves, of the

corresponding part tree. Thus if A U Ai and B = U" I Bj, the following result can be used

in computing CO Y'(B):
kA ka

CoA(B) = U U COA.(Bj),
i=l j=1

This result means that kA X /'11 applications of the CO' (B) algorithm must be carried out to

compute CO 1Z(B) exactly. In the "pick and place" application, an exact model of all the Cspace

obstacles is not usually needed since the manipulator will not move close cnough to all the obstacles.

The amount of time needed t, compute the COS can be reduced by simplifying the geometric

models of both the Ai and the Bj when appropriate. Tl'he current implementation uses a simple family

of succesivcly finer approximations for objects based on the part tree. Consider the part tree for

an object Bi , where each of the leaves of the tree is a convex polyhedron. Define a covering node

set recursively to be either (1) the set containing just the root of the part tree or (2) obtained from

17 ('omputing the ('snxu(% Obstacles

another covering node set by replacing some node, internal to the par(tree, with all its descendants. If

each internal node represents the union of all its descendants, then every covering node set is a com-

plete model of the object. In practice, internal nodes of the part trcc store the bounding rectangular

solid5 of the union of all its descendants instead of the union itself. TLhus, the family of covering

node sets represents progressively more detailed models of tie part 1291. Using these approximations

reduces the number of applications of CO'?,P(Bj) needed to compute the COS. since the number

of polyhedra in a covering node set is less than or equal to that in the full fringe. In addition, it

can be used to simplify many of the individual computations, because when A and B are bounding

rectangular solids, computing CQor-(B) is trivial. In particular, if the bounding solids are represented

by the endpoints of their main diagonal, e.g. A = (am, a2) and B = (b, b2), then COA'(B) -

(b, - (a2 - a,), b2).

For simplicity, the current implementation uses a three level part tree for the swept volume of

the manipulator and for the objects in the workspace. Each tree has a root node which models the

complete object by one bounding rectangular solid. The descendants of the root are bounding rectan-

gular solids for each of the convex components of the model and the leaves of the tree arc the convex

polyhedra whose union is the complete object model. Therefore if the object is modelled as the union

of k convex polyhedra, the part tree has 2k + I nodes. Using this representation, CO-JZ(B) can be

modelled as a tree of similar structure with 2(kA X ktj) + L nodes. Any covering node set of this

tree is an approximation to the Cspace.% obstacle corresponding to B. In practice, the complete tree is

not computed at once, rather the simplest approximation, the bounding rectangular solid of the whole

object, is computed and successive covering node sets are computed as needed. This is discussed

further in section 6.

5.3. Choosing the Slice Parameters

So far we have assumed that the configuration ranges defining the CspaceA slices were given as

input; in this section, the choice of ranges is discussed. 'he primary choice is how large to make the

ranges, since it is this that affects the system's capability to use changes in the orientation of the hand

'A bounding rectangular Wid for a polyhedron Lt a reclangular solid whose edges are parallel to the coordinate axes
and thal coimplctely includes the polyhedron.

18 CoMpulmg thC (. mcv,/ Obstacles

to av tid obstacles. In particular:

1. The larger the orientation range of a slice, the larger the manipulator's swept volume, the

larger (and less accurate) the C8paCeA obstacles and the fewer the legal configurations and legal

motions of the manipulator.

2. "lhe smaller the orientation range of slices, the larger the number of slices needed to cover

the Cspace and the more time needed to compute the COS and to search them for a path.

Ibese conflicting effects can be balanced by taking advantage of the fact that, for "pick and place"

motions, the accuracy requirements are higher near the start and the goal of the path, where the

manipulator is moving near obstacles, than along the rest of the path [281 [481 (491. This suggests

defining slices with small rotation ranges centered around the orientations of the start and the goal;

slices with larger ranges may be used for the remaining orientations, 'Ibis approach is used in the

current implementation. In particular, a COS is defined for the orientation of the manipulator in

the start configuration and one for the orientation manipulator in the goal configuration: these COS

correspond to slices with singular orientation ranges, i.e. where the tipper bound of the range equals

the lower boundt. In addition, the total range of parameters in Cspace, is divided among some

number of other slices7 each with non-singular ranges. Furthermore, slices with singular ranges are

defined for configurations at the intersection of the slice parameters of the "larger" slices. Ibis last

type of slice allows moving between safe configurations in the "larger" slices.

Note that the computational burden of adding an extra slice is very low if bounding rectangles

are used for objects. 'this sacrifices some of the potential maneuvering space, but gains a very large

increase in speed. This is the compromise taken in the current implementation.

Motions within a slice with a iingular orientation range are limited to translations, while rotation

is legal witht. a slice with non-singular ranges. lhereforc, the classes of motions allowed by the

system are those composed of translations interspersed with rotations, but where the rotations happen

in increments defined by the slices parameters. 'Ibis means that this approach may fail to find a safe

path in situations where:

6A slice with a singular range is the sane as a mss seeioo.

'Currcntly varying between 8 and 64.

19 Path Searching and Free Space

1. all safe paths require rotations combined with translations at a finer resolution than that

allowed by the slice ranges, and/or

2. the orientation ranges chosen, although adequate in size, do no match those required in the

problem.

Thcse problems can be reduced, at the expense of more computation, by using more slices with

smaller ranges. But, there exists problems which require continuous rotation along a path. In practice,

most robotics applications do not use the very crowded environments that require very high rotation

resolution for the "pick and place" motions. The reason for this is that safe paths in such environ-

mients are very hard for humans to specify, are subject to positioning errors of the parts and are

difficult for most industrial robots to execute reliably at medium or high speeds.

6. Path Searching and Free Space

I laving computed the Cspace I obstacles, it still remains for die system to find a path among these

obstacles. This section briefly touches on alternative strategies for finding safe paths.

One approach to finding paths among obstacles is to search for the shortest path between the start

and the goal, without considering other constraints. For example, the Vgraph algorithm described in

Section 3 follows this approach. Hut, the approach has some important drawbacks. Shortest paths in

CapaceA move along the boundaries of the CspaceA obstacles and are, therefore, very susceptible

to model inaccuracy and position error. This problem can be alleviated by adding a uniform "safety

margin" around the obstacles, but doing so might disqualify some feasible paths. Furthermore,

no cfficient algorithms currently exist for finding optimal paths among three-dimensional obstacles.

Unlike the situation in two dimensions, there is no finite set of points through which shortest paths

are guaranteed to pass. ilius, algorithms would have to be based on iterative numerical methods. For

these reasons, only heuristic algorithms for finding safe paths will be considered here. 'lbese heuristic

algorithms require less execution time and can be extended to consider criteria such as safety margins,

but they will not find the shortest path.

Another issue is whether the path search is conducted using primarily a representation of the

CspaceA obstacles themselves, as does the Vgraph algorithm, or of the free space outside the

20 Path Scarchine and tree Space

ohstacic., s in 148] 1491. Although these represenlaitions are equivalent, they lead to different hcuristic

algorithms. lihe current ilnplelentation uses the free space style of algorithm because it simplifies

the forinulalion of different search heuristics, e.g. the use of \ariahle resolution space representations

described below.

The remainder of the section deals with the free space rcpresetation technique employed in the

Findpath implementation. Section 7 discusse,; the path search algorithm used on this representation.

6. . A Iree Space R epreseniation

The basic goals for it space representation arc accuracy. speed and compactness. In addition,

it should Fdcilitate heuristics for the task at hand. 'lle most important heuristic for a space repre-

sentation is to avoid excess detail (and therefore time spent) on parts of the space which do not affect

tie operation. Therefore. the space representation should not ha~e to maintain a perfectly detailed

model everywhere. Instead, it should have the capability of maintaining a rough model and be able to

selectix elv refine [48] [49] subsections to be its detailed as necessary.

A number of proposals exist for representations of space and objects in space [9] [25] [42]; most

of these divide the space into a set of cells. *rhe proposals can be partially characterized along the

following dimensions:

I. Shape uniformity - are all cells equally shaped?

2. Size unifonnity - are all cells the same size?

3. Orientation uniformity - arc all cells oriented uiiformly?

4. Ordering principle - are the cells ordered into an array, mnti-list, tree, or graph.

We will not consider representations which use cells of uniform shape and/or size, since they typically

require large numbers of cells to achieve sufficient accuracy8 . Instead, we use a hybrid cell repre-

sentation employing two types of cells: (1) rectangular solids aligned with the axes and (2) arbitrary

convex polyhedra. The idea is to use the simple rectangular cells away from obstacles where repre-

sentatiti economy is important and polyhedral cells where high accuracy, e.g. near an obstacle, is

"tUdopa 1181 [491 employed a free space representation which used rectangular cells of variable sizc. This approach is
adequate for motions that do not closely approach the obstaces.

21 Path Searching and Free Space

E2
AS B

B
El Es A E3

E 4ABE

Figure 9. Ihis igure illustrates, in two dimensions, (he space represenlation employed in the implementation
of the Findpath algorithm. (a) A sample C's paCeA obstacle with its pan representation. (b) The resulting
pace reprentation. Rectangular nodes indicate mixed cells, round nodes indicate full cells, and triangular
nodes indicate empty cells

needed.

The space representation described below is analogous to the part representation described

earlier, except that a new type of node is introduced. 'Tihe part tree representation uses rectangular

bounding cells as internal nodes and polyhedral cells as leaves. Thc leaves represent space that is

FULL, i.e. completely occupied by an object. The internal cells represent MIXED space, i.e. cells

which are part FULL. part FMPTY. But, note that the part tree does not have an explicit repre-

sentation of the EMPTY space. The space representation simply adds exp EMPTY cells to the

22 Iath Searching and Free Space

parts tree representation. TIhen each internal NIIXI) node becomes the union of its descendants.

In addition, the space representation introduces a new MIXEI) root node from which all the part

representations descend.

The space representation is built up starting w'ith a bounding rectangular solid representing the

workspace, this is tie first MIXED cell. The descendants of this node arc the MIXED cells cor-

responding to thc roots of the trees representing each of the CO.'"I(B.), as described in Section 5.2

and a set of EMPTY bounding rectangular solids representing the free space outside the MIXED

cells. The representation of each MIXED cell can be further expanded into other FMII'Y, MIXED

and FUL.L cells, culminating in a representation in~olving only EMIYI'Y and FULL, convex polyhedral

cells as leaves of the tree and MIXFD cells as internal nodes, Figure 9. The polyhedral representation

of each i'MPTY cell must be computed so that it does not overlap any MIXED or FUI. cells. As

with the part representation. any covering node set of this tree represents a complete model of the

space, at some non-uniform resolution. This hybrid cell representation is based on a generalization

of the quad tree representation used for images 18] 117] 118] 1201 [431 and the oct-tree representation of

objects 131.

The operations on the space representation described above are very efficient when dealing with

bounding rectangular soids. The most expensive operation is "hen the volume difference of a

MIXD) rectangular cell and a FUI. polyhedral cells must be conputed ; this operation results in

a description of the EMIPI'Y cells. However. this need only be done when high accuracy is required,

usually near the start and the goal of the path. Therefare, the representation meets the criteria stated

at the beginning of the section.

6.2. Building a Free Space Graph

The process described in Section 5 produces a slice for each CspaceA obstacle over each of the

orientation ranges, [Ci, Cilk, of the manipulator's wrist. The set of slices for all obstacles over one

orientation range is denoted COS ci,]1,. For each of these COS, a space representation is com-

puted, SR, as described above. For each of these SRj, a Free Space Graph is built, FSG, this is

a graph where each node is an EMPTY cell in the SR, and a link indicates that the cells touch or
9The current implementation of this operation uses repeated applications of a cutting and capping operation 161.

LM..... . lII .. Iili

23 PaL Searching

overlap'0 .In addition, it is necessary to add links to each FSG, that connect to nodes of otherFSGj

whose rotation range overlaps that ot FSG,. That is. for t'MPTY cells C, E SR and C e SR., if

there is some configuration c contained in both cells, then links muist be placed between Ci and C .

I'his is so because the existence ofc guarantees that it is possible to pass from any configuration in G,

to any in C and vice versa while remaining outside all the obstacles in COS, and COSj. The resulting

composite FSG is then searched for a path, since each path through the graph corresponds to a class

of safe paths in Cspace.t and vice-versa.

7. Pith Searching

The Findpath problem is to find a path between two points, the start and the goal. while staying in

the free space. In the current implementation, this is carried out by the following steps:

1. Choose the largest EMPTY cell in any of the SR enclosing the start configuration.

Otherwise, choose some MIXED cell containing the start and expand the representation of

this MIXED cell into its constituent EMP'Y, MIXED and/or FUI.I. cells. If an EMPIY cell

contains the start configuration, stop, else repeat. Note that this computes successively finer

models, i.e. successive coverirg nodc sets, of the specific area around the start without having

to expand the complete model or even any complete part tree. If no EMPI'Y cell is ever found,

the task is impossible since the start configuration causes a collision.

2. Perform step 1 for the goal configuration.

3. Construct a Free Space Graph as described in Section 6.2. At this point, the Free Space

Graph is in its final form; the current implementation does not refine the space representation

further.

10 lhe current representation allows EMPTY cells to overlap each other but not MIXED or FULL cells.

24 Path Searching

4. Search for die shortest path in the F-ree Space Graph from the cell including the start to

that including the goal. 'Ilic graph search operation can be carried out by any of the standard

shortest path algorithms [131J the current implementation uses the A4 algorithm (15]. These

shortest path algorithms require that a weight be assigned to each of the links of the Free Space

Graph e.g. indicating (he time required to traverse tie cells. How this may be done is discussed

below. If no path exists, this may be due to tie approximations and quantizations used in the

solution, see Section 7.3.

5. Choose a line path contained in the cell path. This problem is discussed in Section 7.2.

7. /. Assigning Link Weighis for ihe FSG

The definition of an "optimal" path, or even a "good" path, assumes some choice of performance

index. The current implementation uses estimated time of travel along the path as the index. If

CapaceA is the manipulator's joint space, then the time to travel between two configurations can be

estimated as the maximum time lbr any of the joints to travel, at the maximum rated joint velocity,

between the joint settings at each configuration. The weights assigned to die links in the FSG should

therefore reflect the time needed to travel between two overlapping cells along the optimal path. Of

course, no weight assignment can actually do this since it requires knowing tie complete optimal path.

A simple alternative is to assign to a link the estimated time of travel between the centroids of the

cells that it connects. '"llis weighting function has the advantage of being very easy to compute. For

small cells it provides a good approximation of the actual time to traverse the cells, but for larger cells

it might overestimate or underestimate the actual time, see Figure 10. The current implementation

uses the ccntroid weighting function, but does not divide the large EMPTY rectangular cells into

smaller cells: this will be implemented in the near future.

A more complex weighting function, which would typically produce faster paths, is the following:

The weight on the link between cell C and C' is assigned the time to traverse C from p, the point

of entry to C, to p1, the point of entry into C'. The point p' is the one on C r) C' that minimizes

the distance I to the line between p and the goal. Tihe initial C is the cell that contains the start
' Actually, the difference in time between the straight line path and one going through this point

25 Path Searching

., ',

bC

li.pre It. Two dimensional illusiration of failiigs of the centroid weighting function. (a) Overenala
when one cell is large, (b) underestimating beamu ol limited connertivity, and 1c) overeimnalini becaume o
large overlap. lc %olid line is the optimal path between cells, the dahed lines is the path that the ftniction
would use to evaluate the distance between cell&

configuration and the initial p is the start configuration. Clcarly, this technique requires much more

computation that the controid weighting described above. For most applications, the simpler centroid

function, together with ccli spliuing should suffice.

7.2. Choosing a Line Path

The search of the FS0 produces a list of EMPTY C5pIMA cMlls that touch or overlap; it Is still

necessary to choose a specific path, i.e. somQ curve, within these cells. The simplest type of path

to choose is a piecewisc linear one, although the cells simply place configuration constraints on the

manipulator along the path and any path satisfying those onstraints will be safe.

If the centroid weighting has been used for the links, it is natural to choose a piecewise linear

path that traverses the centroids of the cells. Of course, the straight line path between two centrolds b

not guaranteed to remain within the cells and might therefore not be safe. Therefore an intermediaue

configuration in the intersection between adjacent cells should be chosen. The centroid of the inter-

section of adjacent cells on the path can be used for this purpose; this is the technique used in the

26 Exampks

current implementation. Alternatively, this point could be chosen so as to minimize the deviation

from a straight line path between the centroids. If the cell size is small enough, such paths are

adequate for most tasks

The more complex weighting scheme described earlier produces a sequence of entry points into

the cells which may be connected directly to obtain a path. Since the points are contained in the

intersection of the cells, a straight line connecting them is guaranted to be in the cell.

7.3. Dealing with Path Search Failure

If the path search algorithm fails to find a safe path, the reason for failure could be one of the

following:

1. No safe paths exist.

2 No safe paths exist at the quantization of orientations chosen.

3. The approximations of objects by bounding rectangular solids has removed necessary

maneuvering space.

Ibe last two causes of failure may be overcome by decreasing die orientation quantization and/or

increasing the representation detail in the space representation, both at the expense of extra computa-

tion. 'Ibis suggests the possibility of increasing the accuracy of the space representation when a path

search failure ocurrs. The current implementation does not exploit this possibility.

. Examples

This section presents output from the implementation running on a simple example. The results

are collected in Figure 11.

a. The initial and final configuration of the model, including the manipulator model. Note

that the manipulator must rotate to execute this motion.

start goal

As

4

Figure Ila
The start and goal configurations and the world model

27

COACE(COA2 (B 1)

CO (T)
A3

Fiur (Tb
STR O:Te Oaeosale o h aipltri h

str Figuration.

START~~~~~~~~V CO:TeCp btce&frtemnpltri h

Figure 11C

GOAL COS: The Cspace obstacles for the manipulator in the
goal configuration.

27-c

Figure lid

The Cspace obstacles for the swept volume of the manipulator
aver a range of configurations of the wrist.

27d

Iv

Figure lie

The Cell Path with superimposed Line Path

x

Figure hlf
The Cell Path and Line Path superimposed on GOAL COS

-f

28 (ll(M)SI11 6;ra"11 ('unfiplalionsL

h. The COS for the start configuration. Ich convex solid in (he figure is a representation of

CO-:iI-(Bj). Note that most of these Cspacc o obstaclcs are rcclangular solids, cxcept for those

arising from the interaction of the hand, A., with block B, and the fingers. AI and A2, with

the table. In these cases, the manipulator is so close to these obstacles that its configuration is

inside the bounding rectangular solid for the configuration obstacles (In practice, the sides of

the bounding rectangular solid are displaced outward by some small T). 'his condition causes a

detailed expansion to be carried out.

c. The COS for the goal configuration. In the goal configuration none of the obstacles needs

to be expmded in detail.

d. The COS for one of the intermediate configuration ranges.. This COS is defined for the

manipulator's swept volume over a range of orientations of the wrist and hand. One bounding

rectangular solid, A, approximates the swept volume Of the hand and fingers, A, U A2 U A3.

The solidsA 4 and A5 remain unchanged.

e. The cell path and the line path. This shows the cells fror the various space representations

that compose the cell path. One group of cells correspond to free space for the initial

configuration, one large cell comes from the intermediate configuration (where the hand rota-

tion takes place), and the last group of cells correspond to the final configuration. The line

path shown goes through the centroid of each of the cells and also through the centroids of

the intersection of adjacent cells on the path. Notice that because the cells are large, this path

strategy produces paths that move too far from the obstacles. 'is could be overcome by sub-

dividing the cells before finding the line path.

. The cell path superimposed on the start COS. 'fl7is shows the relative placing of the free

cells relative to the obstacles.

9. Choosing (ra'sp Con figurations

"l'he preceding sections have discussed the problem of finding salb paths for the manipulator; this

is only part of the "pick and place" synthesis problem. '[he major remaining problem is choosing

29 (hosming Grasp Configurations

a grasp configuration on the part. P. For simple parts and non-cluttered environments, grasping is

amenable to simple ad-hoc solutions. As a step in tie solution of this problem, we deal here with

choosing grasping configurations for relatively simple parts in cluttered environmcnts. In this section.

a Cspace approach to this problem is described, although no implementation of this approach to

grisping currently exists.

The grasping problem is iclated to the Findspace problem introduced in Section 3, insofar as it

involves choosing a safe configuration among a set of obstacles. But, there are additional constraints

on the choice, for example:

1. the manipulator's fingers must be in contact with P,

2. the configUration must be reachable, and

3. P must be stable in the manipulator's hand, i.e. it will not slip in the hand during a motion.

'Thc first two conditions, contact and reachability, reflect additional geometric constraints on the solu-

tion to the Findspacc problem. The third condition, stability, reflects aspects of grasping beyond the

purely geometric. Stability will be briefly discussed later in the section.

'llic approach to grasping described here is based on tie one described in [251 and [261. ihe

basic idea is to build an explicit description of the set of configurations of the manipulator A for

which the inside of the manipulator's fingers are in contact with specified surfaces of P. This set

of configurations is some subset of CO(P), call it G. Feasible grasp configurations are those in

G, that do not cause any collisions with other objects in the workspace, i.e. that are outside all of

the COAl(Bj). In this section, the details of this approach are discussed. We make tie following

simplifying assumptions:

I. The manipulator is cartesian and its hand is a parallel jaw, i.e. two parallel fingers that move

along their common normal.

2. Only parallel planar surfaces, whose distance from each other is less than the maximum

finger opening, are candidates for grasping. These are known as grasp surfaces.

These assumptions simplify the method for identifying feasible grasp configurations, while suggesting

its usefulness and providing the foundation for a more general approach.

30 Ch-(oosing Grasp Configuralions

H

rvA

F2

Figure 12. The definitions of P,, P. Ft. r 2. and 11 used in choosing grasping configurations.

9. 1. Feasible Grasp Configurations

Let Pi and P be the parallel faces' 2 of P to be grasped, and F, and F2 bc the inside faces of

the manipulator's fingers, Figure 12. Under the two assumptions stated above, when A grasps P, F

and F2 are coplanar with Pi and Pj respectively. Uiider these conditions, the legal (Z, y, z) positions

of rvA are restricted to some plane H that is parallel to P and Pj. Let GA(P, Pj) be the set of

configurations of A for which rvA is in H and for which Pi, Pj, F, and F2 are mutually parallel. Note

that GA(P, Pj) represents those positions and orientations where A could be when grasping Pi and

P, without specifying the distance between the fingers. GA(Pi, Pj) is called the grasp set for Pi and
Pij.

Note that not all the configurations in GA(P, Pj) arc feasible grasp configurations, either because

12 Note that objects in the current implementation are modelled as unions of convex polyhedra. Convex polyhedra are
defined as the intersection of a finite number of half-spaces. where each half-space is bounded by a plane. The portion
of each bounding plane on the boundary of the polyhedron is a convex polygon, known as a face of the object.

31 (hoosing (;rasp Configurations

the fingers are not in contact with the grasp surfaces or because the manipulator configuration causes a

collision with some other object. Therefore, we must impose two additional restrictions:

1. Ille internal faces of the fingers must overlap the grasp surfaces.

2. The manipulator must not collide with any other object in the workspace, i.e. the Bj.

With these restrictions on the configurations in the grasp set. wc obtain the set of feasible grasp

configurations, called afeasible grasp se and denoted FGI(P, Pi).

l)efinc the configurations of F and F2 to correspond to those of the manipulator, i.e. each

position and orientation of these faces is charactcri/ed by the manipulator configuration which would

place them there. From these definitions it follows that CO 1 (Pi) is the set of those configurations of

A for which the F, is in contact with Pi. Furthermore, CO,(P) rG) (P,, Pj) are those configurations

for which tie finger is in surface-surface contact with P,. Therefore, it follows that

FG (P,, P)= (co,.-(P,) n cov.(1%) n G-(P,, P3)) - U COA(B)

In this definition, we must let P be one of the B, say Bp, so as to avoid collisions with P while

approaching a grasp configuration. but we must also allow A to contact P on the grasp surfaces. The

answer is to add a slight displacement inward to P and Pj, when computing CO(Bp), while using

the original definition in the computation of COF,(Pi) and COPF(P).

The feasible grasp set, as defined above, is a volume in a six-dimensional Caspace1 . We do not

have algorithms for computing this volume exactly. The algorithms of Section 3 serve only to com-

pute slice projections of the CapaceA obstacles. It is clear that the same must be done for the feasible

grasp set, namely computing its slice projection for some range of orientations. Such a slice would be

the set of(z, y,z) positions of A that, for some range of orientations of A, are in contact with P, but

outside all of the Bj. Presumably, this requires using the slice projections of CO.,,(Pi), COp,(Pj), and

the COA(Bj). A problem arises when trying to do this, because slice projections were defined over

simple orientation ranges of the cartesian manipulator's wrist defined in Section 5. These ranges are

not, in general compatible with the ranges of orientations that define G(Pi, Pj). For a position of

rvA on H, only a small range of orientations will result in configurations that are in GA(Pi, Pj), yet for

that position to be in a slice of FGA(P,, Pj) it must be the case that no orientation within the slice's

32 (hwsin Grasp Configurations

defining range causes a collision. 'lherefore, few, if any, configurations in the grasp set will be feasible

grasp configurations.

The solution to this problem is simply to define a new set of slices whose orientation ranges are

subsets of the orientation ranges in G,.(P,, Pj). Note that a configuration in such a slice already

satisfies the orientation constraints of the grasp set. Therefore, only the position constraints, i.e. that

the (x, y, z) position be in H, need to be enforced to obtain the intersection of a Cspace obstacle in

that slice with tie grasp set. This removes the need of computing die complete representation of the

obstacles, while simultaneously avoiding the problems introduced by irrelevant orientations.

Computing the obstacle slices fIr orientations in the grasp set requires being able to compute the

swept volume of the manipulator over orientation ranges that are not the simple ranges of joint angles

defined in Section 5. L.et R be the set of orientations in the grasp set that define a slice and denote

the swept volume of A over R as AIR]. Algorithms for approximating the swept volume over these

ranges can be based on the simple approach described in the Appendix. The impo ...at constraint on

the approximation to AIR] is that it does not intersect the grasp s .irfaces for positions of rvA on H.

In addition to the manipulator displacing and rotating, the manipulator's fingers may move per-

pendicular to the grasp surfaces. This additional degree of freedom has not been discussed above. In

fact, it poses no additional problems: the motion of the fingers can be treated, via slice projection,

uniformly with rotation. This simply requires including the space swept out by the fingers during

closing, in the swept volume used to define slices of the CO,1(Bj).

9.2. Overlap of Finger and Surface

The approach described above deals adequately with the CO.I(Bj) in the definition of feasible

grasp set, but is less succesful in dealing with C'O.-,(P) and COk(Pj). The reason for this is that

a position in the slice projection of CO,.1,(Pi) simply indicates that for some orientation of A in the

slice, the finger is in contact with P. What is required instead is the set of positions which for all

orientations of A in the slice, there is contact. In fact, we would like to guarantee that the area of

contact between the fingers and the grasp faces always exceeds some fixed area. How this may be

accomplished is discussed below.

33 Choosing Grasp Configurations

S Fb

CI~I

a b

igurc 13. Defining the configurations of A for which I' overlaps 1'. (a) Illustration of the definition of Tk
and S. (b Illustration of I'IY(I'j) H S, with two positions of P's reference vertex (indicated by the smaill
circles) showing the area of overlap includes an area of the form Tk ED a, for some a E S.

Let Fk and P be, respectively. a finger surface and thc corresponding grasp surfacc. We define

Tk. to be a small strip at the tip of Fk, such that Fk = TkE S, whcre S is the sct of' points along a
line segment as shown in Figure 13. Again, we assume that the configurations of Tk correspond to

those of Pk (and therefore A). Assume A is in sonic configuration c E GA(P, Pj), so that Fk and P

are coplanar, then CI'P(P) is the set of (z, i, z) configurations .4 Tk, and therefore of F and A,

for which Fk n P Q Tk. But we do not want to restrict the overlap between Fk and P, to be at the

fingertip; instead, we want the area of overlap to include some area Tk,, obtainable by translating T

along S, i.e. Tk = Tk ED {}, with a E S. It is easy to show that

34 Choosing Grasp Configurations

CIsZ(Pj) = { c 1 3a E S: P1 f- (Fk)c (Tk) B (a) }

Therefore, this is the desired set of configurations, see Figure 13. Ibis result can bc applied to com-

pute the slices needed for the feasible grasp set. If R is the orientation range defining the slice, then

C ,M1(F) E S[R] represents the set of(x, y, z) configurations that, for orientations in R, guarantee

that the contact between Fk and Pi includes Tk. Note that this approach can be generalized to any S

and Tk such that Fk = Tk D S, as T7 .becomes smaller and approaches a point, then S approaches Fk.

9.3. Safely at the Destination

So far, the definition of FGA(Pi, P) only embodies constraints relating to safety at P's initial

configuration, however a grasp configuration must also be safe at P's final configuration. Clearly,

another feasible grasp set can be computed at P's final configuration, say FG4(Pi, Pj) where the

primed faces indicate the faces at their final configuration. But, these two feasible grasp sets cannot

be intersected to obtain those grasp configurations that are safe for both configurations of P, be-

cause a grasp configuration corresponds to different manipulator configurations at each different

configuration of P. What is needed is a way of defining those grasp configurations in P's initial

configuration that would lead to a collision when P is in its final configuration, Figure 14.

A grasp configuration establishes a fixed relationship between the fingers and the grasped part,

P. Let the final configuration of P be obtained by a displaccmnct consisting of a translation t and a

rotation r, indicated by D,,(P). Clearly, any set of positions X bears the same relationship to D1,4P)

as D ,(X) bears to P. Therefore, if COAIz(Bj) is a set of positions of A which cause collisions at P's

final configuration, then Di,,I(CO,'ti(Bi)) represent infeasible grasp configurations, Figure 14. TIhis

result also holds for swept volumes of A, therefore it may be used to ensure safety at the destination in

the definition of feasible grasp sets.

9.4. Computing the Feasible Grasp Set

The discussion in the preceding subsections is summarized in the following dcfinition of feasible

grasp set, for some range of orientation in the grasp seL We denote this orientation range as R, and

let R' denote the same orientation range as R relative to P, but at P's destination. We also let (1, r) be

[_od

35 'hOising Grasp Configurations

a

b

C

d

Figure 14. (a) A side view o 'a manipulalor hand, composed of a finger and a "palm", hold-
ing P at the initial and final configuration. (b) In the initial configuration, the shaded area
represents CO,.'(P,) - UJ, CC0 (Bj). i.e. the fcasible grasp configurations for A, considering

only safety at the origin and letting T be a point. (c) The COIv,,(B) for the final configuration
of'A and P. (d)'Il*c shaded area represents COla(P) - Uj COA""(B) U D-I(COW*(Bj)),

which is the feasible grasp set that takes into account safety at the destination.

36 Choosing Grasp Configurations

the displacement between the initial and final configurations of P. 'Ihen, the feasible grasp set, for the

orientation range R and displacement (t, r), is:

FGA'Y1(Pi, Pj)= ((CI.11 I(P,) n CI' (P)) E SIlR) - U COzt1 jj(Bj) U D,. (COA 11(Bj))

All of thc clemcnts in this dcfinition can be computed using the CO111 algorithm of Section 3.2 and a

swcpt volume algorithm.

9.5. Approach and Departure

Configurations in the feasible grasp set, as defined above, are guaranteed to be safe both at P's

initial and final configuration. While these conditions are sufficient in most situations, they do not

guarantee that the feasible grasp configurations can be used during a "pick and place" operation. For

a feasible grasp configuration to be a legal grasp configuration, it must allow the manipulator to reach

and depart P's initial and final configurations. Summarizing, the following conditions must hold for a

legal grasp configuration:

I. It must be possible to reach it from the initial configuration of the manipulator.

2. It must be possible to remove P from its initial configuration safely.

3. It must be possible to reach the P's final configuration with P held in the hand.

4. It must be possible to withdraw the manipulator from P's final configuration.

The Findpath algorithm described in the preceeding sections can be extended to deal with

the problem of choosing a grasping configuration that is reachable from the manipulator's initial

configuration. As we saw above, the feasible grasp configurations, over some range of orientations, are

those within some specified volume of CspaceA, but outside the slice projections of suitably defined

CspaceA obstacles. Hence, they are equivalent to the slices, COS[c, c' of Section 6.2. Thercbre,

a free space representation for the feasible grasp configurations can be constructed and the resulting

free cells linked in the Free Space Graph. Tlhe feasible grasp configurations for alternative grasp

surfaces can also be linked into the graph. In the resulting PSG, any path from the cell containing

the origin to a cell containing a feasible grasp configuration shows that this grasp configuration may

37 ('huoing Grasp C figiurations

be reached from the origin. The path searching process must be modified to search for any cell

which contains a suitable grasp configuration. rather than searching for a particular cell containing the

destination.

Similarly, departure from the origin and approach to the destination could be handled by testing

whether the destination is reachable, using die 'SG constructed as above. The difference is that now

die hand is holding P, therefore the polyhedral description of P must be treated as if it were part of

the manipulator. This requires adding a new set of Cspace1 obstacles, arising from the interaction of

P and the objects in the workspace, to the ones already computed for the manipulator. This is entirely

analogous to modifying the description of the manipulator, which is already modelled as a union of

convex solids. But, the geometric relationships between P and the Ai are determined by the grasp

configuration, which has several degrees of fieedom. The problem can he approached by treating

these additional degrees of freedom, via slice projection, just as the wrist rotations were treated. This

approach imposes a great cost in additional computation. A simpler, though less general, technique is

to use heuristics in choosing a feasible grasp configuration and then test, via the path search process,

whether that grasp configuration permits departure. If it does not, a new configuration might be

chosen and the process repeated. This approach would be not be adequate For very cluttered environ-

ments or situations involving parts mating at the destination. In such environments an approach based

on slice projection would also be susceptible to failure. Further research is needed in this area.

9.6. Stability in Grasping

We have thus far not considered the issue of stability of the feasible grasp point. An adequate

treatment of stability in grasping is not yet available, although some promising approaches exist [5].

The techniques described in this section can be used to implement two simple grasping heuristics,

which work adequately when (I) the manipulator hand is made up of rigid fingers, (2) the object to be

grasped, P, is small relative to the manipulator hand and (3) parts mating effects are ignored. The two

heuristics arc:

1. Fnsure at least a minimum contact area of the fingers with the grasp surfaces. 'T'he amount

of overlap should depend on object properties such as weight and surface smoothness.

38 The Effect of Unccrtainty

2. lhe perpendicular projection of P's center of mass should be near to F, n Pi and F2 n P.

The implementation of the contact area heuristic was discussed above, Section 9.2. 1he center

of mass heuristic can be implemented by giving preference to grasp surfaces for which the center of

mass, projected onto the plane containing Pi, falls within Pi and similarly for Pj. Furthermore, for

specified grasp surfaces, the choice among legal grasp configurations should minimize the distance of

the prjction of the center of mass to the area of overlap between finger and grasp surface.

These heuristics, though adequate for many tasks, are not a substitute for a general theory of

stability in grasping. 'his remains one of the most interesting open problems in robotics.

10. 'Ihe Effect of Uncertainty

In the prececding sections we have assumed that:

1. the configuration of all the objects is known exactly, and

Z. the configuration of the manipulator can be controlled exactly.

Both of these assumptions are only approximations to reality. In practice, configurations can only

be known to within some uncertainty. Both of these sources of uncertainty affect what manipulator

motions are safe.

10.1. Modelling Worst-Case Uncertainly in CpaceA

In CspaceA, the two sources of uncertainty have similar effects, i.e. modifying the shape of the

CspaceA obstacles. lis section deals with techniques for taking into account these effects. The

following notation is useful in the discussion, Let e = (i) = (P3,... , /l) E R" and similarly, let

configurations be (yi) = (',..., y',) E R . The index set (1, ... ,n} will be referred to as I; let

K C . The set UK(e) denotes the set of configurations in CapaceA whose K-parameters are less than

the absolute value of the corresponding parameter of e.

(1i) E U e) P i -! Jy - 1 ,i , ifi E K

= 0, otherwise

39 IhC l[flt'c of Uncertainly

Uncertainty in the configuration of A in Cspace.A can be represented as a region around its

nominal configuration, c: within this region are all the configurations that A may be in. Simple regions

can be characterized by {c} (D Ul,(e,. Assume that (A), nl B 5 0, i.e that a E CO%(B). Any

nominal configuration a' such that a' + x = a, for x E U (e,), should also belong to CO4 (B). 'Ibis

means that under uncertainty of A. CO4 (B) should be replaced with CO.I(B) 9) UKf(e4). In practice.

we do not ever compute CO,.(B)" rather, we compute slice projections of it using the swept volume

of A over ranges of orientation parameters, . Therefore the orientation and translation uncertainty

must be treated separately. Orientation uncertainty affects the definition of the manipulator's swept

volume. For example, to compute a slice with parameters 1c, c'li, the swept volume Alc-eA, c'-eA]R

is used in place of A[c, c'I1. The effect of the uncertainty in the translation parameters, T, can be

computed as indicated in Section 5. 1. using the CO.112(B) algorithm.

The worst-case effect on CO.,(B,) of un.ertainty in the configuration of the Bj, can be modelled

by replacing B with the swept volume of B over the uncertainty range. Alternatively, if the uncer-

tainty in the configuration of B can be approximated by an uncertainty in translation 3 , Ur(en,) then

the uncertainty of A and B can he combined into a single uncertainty'1 and treated as the uncertainty

of'A. If T is the set of indices for translation parameters, then the combined uncertainty is:

UTV(eA) = UeB) E U7,(eA)

10.2. The Effect of Uncertainty on "Pick and Place" Synthesis

ihe presence of uncertainty significantly affects manipulator programming in general and the

synthesis of "pick and place" motions in particular. One approach to planning motions in the

presence of uncertainty is to plan paths that are safe tinder the worst case uncertainty, i.e. paths

outside the expanded Capacel obstacles defined above. This approach rules out most operations

that involve moving near objects, e.g. grasping. Another approach is to assume that uncertainty

does not significantly affect the outcome of most operations and to plan motions assuming nominal
13,his can be done by defining a new translation uncertainty such that the swept volume over this range of positions

will contain the swept volume over the original unceitainty range.
t 4lbis a,.unes that the translation space of the manipulator is the same as that of the objects in the workspace, which
is true for careian manipulators.

40 The IJfect of Lnccnainty

configurations. A compromise position is to redefine the "pick and place" synthesis problem so as to

isolate those operations that arc most susceptible to uncertainty from those others where uncertainty

plays a relatively minor roIc. The latter can be addressed by the techniques outlined in this paper, the

former require a differcnt approach. One possible re-definition of the "pick and place" problcm is the

following:

I. Find a nominal grasp configuration assuming that there is no uncertainty.

2. Identify a grasp approach configuration, a configuration that can be shown to be safe under

worst-case uncertainty estimates for object and manipulator configuration.

3. Identify a grasp deproach configuration, a configuration which is safe for the manipulator

grasping the part, given the uncertainty in the part's configuration after grasping and the uncer-

tainty in configurations of nearby objects.

4. Compute a path, from the manipulator's initial configuration to the grasp approach

configuration, assuming worst-case uncertainty.

5. Identify a destination approach configuration, a configuration which is safe for the manipulator

holding the object, given the uncertainty in the grasp configuration and the uncertainty of

nearby objects.

6. Compute a safe path from the grasp deproach configuration to the destination approach

configuration for the manipulator and the grasped part, also assuming wort-case uncertainty.

7. Identify a destinaion depproach configurafion, a configuration which is safe for the

manipulator, given the uncertainty of nearby objects.

This formulation of the synthesis problem factors out the problems of approaching and dcproach-

ing both the nominal grasp configuration and the destination. For both of these problems, the use

of sensory information to identify the actual state of the task and to accomodatc to it is important

[251 [301 [44]. When the uncertainty is small, the problem can be dealt with by ad hoc methods,

e.g. opening the fingers very wide and relying on the grasping action to place the object and/or

the manipulator in approximately the correct orientation [19]. The general problem of planning

manipulator operations that are robust in the face of uncertainty is an important problem f,0|. but

41 Summary

beyond the scope of this paper.

II. Summary

This paper has presented an approach to the central geometric problems underlying the synthesis

of "pick and place" motions for cartesian manipulators. The key tcchniquc in the approach is the use

of explicit polyhedral representations of the configuration constraints on the manipulator. This repre-

sentation permits the use of simple and powerful geometric operations to solve problems involving

safe motions of the manipulator. In particular, the problems of finding grasp configurations and safe

paths in the absence of uncertainty.

The concepts of Configuration Space and Configuration Space Obstacle have played a central role

in the approach to gross motion synthesis developed here. Similar concepts play an important role in

the approach to compliant motion synthesis described in [30]. These concepts have also proven usefud

in other geometric applications [I] 121 [41 [45).

Acknowledgements

All of this paper, in particular the section on choosing grasp configurations, has benefited greatly

from the criticism, insights, and suggestions of my colleague, Matt Mason. I would also like to thank

Mike Brady, John Hollerbach, Berthold Horn, and Patrick Winston for reading drafts of this paper

and, in general, for their help and encouragement.

42 References

References

111 Adamoivicz, M. The optimum two-dimensional allocation of irregular, multiple-connected shapes
with linear, logical and geometric constraints, PhliI) Thesis,)epartment of Electrical Engineering,
New York University, 1970.

[21 Adamowicz, M and Albano, A. "Nesting two-dimensional shapes in rectangular modules," Computer
Aided Design 8, 1 (Jan 1976), 27-32.

131 Ahuja, N; Chien, R T; Yen, R and Bridwell, N. "Interference Detection and Collision Avoidance
Among Three Dimensional Objects," First Annual National Conference on Artificial Intelligence
I Stanford University, August 1980.

141 Albano, A and Sapuppo, G. "Optimal Allocation of Two-I)imensional Irregular Shapes Using
Heuristic Search Methods," IEEE Transactions on Systetns Alan, and Cybernetics SMC-10, 5
(May 1980), 242-248.

151 Asada, H. "Studies in Prehension and Handling by Robot [lands with Elastic Fingers," University
of Kyoto, 1979.

[61 Blaumgart, B G. "Geometric Modelling for Computer Vision," Stanford Artificial Intelligence
Laboratory, Memo 249, October 1974.

[71 Boyse, J W. "Interference Detection Among Solids and Surfaces," Communications of the ACM
22, 1 (January 1979), 3-9.

[81)yer, C R, Rosenfeld, A and Samet, H. "Region Representation: Boundary Codes from Quadtrees,"
Communications of the ACAI 23, 3 (March 1980), 171-179.

[91 Eastman, C E. "Representations for Space Planning," Communications of the ACM 13, 4 (April
1970). 242-250.

[101 Finkel, R; Taylor, R; Bolles, R; Paul, R; and Feldman, J. "AL, A Programming System for
Automation," Stanford Artificial Intelligence ILaboratory, AIM-177, Nov 1974.

[1 Freeman, H. "On the Packing of Arbitrary-Shaped Templates," Second USA-Japan Computer
Conference, 1975, 102-107.

[121 Giralt, G; Sobek, R and Chatila, R. "A Multilcvel Planning and Navigation System for a Mobile
Robot," Sixth Internat'onal Joint Conference on Artificial Intelligence, Tokyo, Japan, August
1979, 335-338.

1 31 Golden, B. "Shortest Path Algorithms: A Comparison," Operations Research 24, 6 (November
1976), 1164-1168.

[14) Grunbaum, B. Convex Polytopes, Wiley Interscience, New York, 1967.

43 Rcfcrcnces

1151 IHart, 1": Nilsson, N and Raphael, B. "A Formal Basis for the H-euristic [)ccrmnination of
Mininium Cost Paths." IEEE Transactions on System Science and Cyberneiics SSC-4, 2 (July
1968), 100-107.

116] 1Iomdcn, WV E. "The Sofa Problem," Coinpuier Journal 11, 3 (November, 1968), 299-301.

1171 1 luiiter. G M and Sweiglitz, K. "I inear l'ransformation (if Pictures Represented by Quad Trees,"

(ipier Graphics and Intage P'rocessin~g 10. (1979), 289-296.

1181 1 lunter, G M and Steigliti., K. "Operations on limages Using Quad 'Irecs," IEEE' Transactions on
Patterni Analysis and Alachine Intelligence PAM I-I1, 2 (April 1979), 145-153.

1191 Inoue, ItI. "Force Feedback in Precise Assembly Tasks," Ml' Artificial Intelligence Laboratory,
AINI-308, August 1974.

120) Klinger, A and l)yer. C R. "Experiments on Picture Representation Using Regular Decomposition,"
('ontipuier Graphics and Imiage Processing 5, 1(1976), 68-105.

1211 Korni. G A and Komn. T NI. Mathematical Handbook for Scientists and Engineers, McGraw Hill,
New York, 1968.

1221 Larson, Ri C and Li, V 0 K. "Finding Minimum Rectilincar l)istancc Paths in the Prescnce of
Obstacles," MIT Operations Research Center, Olt 08-79, May 1979.

1231 Len s, R A. "AutonomoPus Manipulation on a Robot: Summary of Manipulator Software
Functions," Jct Propulsion ILaboratory, California Institute of 'lcchnology, 'IM 33-679, March
1974.

[241 Liebermaan, 1, and Wesley, M A. "AUTlOPASS: An Automatic Programming System for Computer
Controlled Assembly," IRAI Journal of Research and Development 21, 4 (July 1977).

1251 Loiano-Percz, TI. "'Ihe Design of a Mechanical Assembly System," MIT' Artificial Intelligence
Laboratory, 'l'R-397. Dec 1976.

1261 Lozano-Pcercz,T' and Winston, P H. "LAMA: A Language for Automatic Mechanical Assembly,"
rifm huternational.Ioint Conference on Artificial Intelligence, Massachusetts Institute of Techno-
logy, August 1977, 710-716.

[27] L.anio-lerez, 'I. "Spatial Planning: A Configuration Space Approach," IEEr Transactions on
(oniputers ('To appear).

1281 Lo,.ao'lPcrcr, T and Wesley, M A. "An Algorithm far Planning Collision'Frcc Paths among
Polyhedral Obstacles," Communications of the ,IC&I 22, 10 (October 1979), 560-570.

1291 Marr, 1) and Nishihara I] K. "Representation and Recognition of the Spatial Organization of
I'hrcc D~imensional Shapes," MIT'Artificial Intelligence Laboratory, AIM-416, May 1977.

1301 Mason, M 1'. "Compliance and Force Control for Computer Controlled Manipulators," MIT

44 Rcference

Artificial Intelligence Laboratory, TR-515. April 1979.

[311 Malhur, G. "The Grasp Planner," Department of Artificial Intelligence, University of Edinburgh,
DAI Working Paper 1, 1974.

1321 Moravec, H P. "Visual Mapping by a Robot Rover." Proceedings Sixth International Joint
Conference on Artificial Intelligence, Tokyo, Japan, August 1979.

[331 Nilsson, N. "A Mobile Automaton: An Application of Artificial Intelligence Techniques,"
Proceedings International Joint Conference on Artificial Intelligence, 1969, 509-520.

[341 Park, W 1'. "Minicomputer Software Organization for Control of Industrial Robots," Joint
Automatic Control Conference, San Francisco. 1977.

[35] Paul, R P. "Modelling, Trajectory Calculation and Scrvoing of a Computer Controlled Arm,"
Sranford Artificial Intelligence Laboratory, AIM-177, November 1972.

(361 IPaul, R P. "Manipulator Cartesian Path Control," IEEE Transactions on Systems Alan, and
Cybernetics SMC-9, 11 (November 1979), 702-711.

[371 Pfister, G. "On Solving the FINDSPACE Problem, or How to Find Where Things Aren't," MIT
Artificial Intelligence I.aboratory. Working Paper 113, March 1973.

1381 Popplestone, R J. "Specifying Manipulation in Terms of Spatial Relationships," Department of
Artificial Intelligence, University of Edinburgh, No. 117, June 1979.

[39) Popplestone, R J; Ambler, A P and Bellos, I M. "An Interpreter for a Language for Describing
Assemblies," Artificial Intelligence 14, 1 (1980), 79-107.

[401 Popplestone, R J; Ambler, A P and Bellos, I M. "RAPT: A Language for Describing Assemblies,"
Industrial Robot 5, 3 (1978), 131-137.

[411 Preparata, F and Hong, S. "Convex Hulls of Finite Sets of Point in Two and Three Dimensions,"
Communications of the ACM 20, 2 (Feb 1977), 87-93.

(421 Reddy, D R and Rubin, S. "Representation of Three-Dimensional Objects," Department of
Computer Science, Carnegie-Mellon University, CMU-CS-78-113, April 1978.

[431 Samet, H. "Region Representation: Quadtrees from Boundary Codes." Communications of the
ACAI 23, 3 (March 1980), 163-170.

(441 Simunovic, S N. "Force Information in Assembly Processes," Fifth International Symposium on
Industrial Robots, September 1975.

[451 Stoyan, Y G and Ponomarenko L D. "A Rational Arrangement of Geometric Bodies in Automated
Design Problems," Engineering Cybernetics 16, 1 (January 1978).

(461 Taylor, R. "A Synthesis of Manipulator Control Programs from Task-Level Specifications"
Stanford Artificial Intelligence laboratory, AIM-282, July 1976.

45 References

1471 Ilionipson. A N1. "'le Navigation System of the JIl. Robot." Iifh InernationalJoint ('onference
on Artificial Intelligence. Massachusetts Institute ol'Technology, 1977.

1481 Udupa, S. "Collision [)election and Avoidance in Computer Controlled Manipulators," Fifth
International Joint Conference on Artificial Intelligence, Massachusets Institute of Technology,
1977.

1491 Udupa, S. Collision Detection and Avoidance in Computer Controlled Manipulators, PhD
l'hesis, Department of Electrical Engineering, California Institute ofrechnology. 1977.

[501 Widdoes, C. "A Heuristic Collision Avoider for the Stanford Robot Arm," Stanford Artificial
Intelligence Laboratory, 1974.

1511 Vingham, M. Planning How to Grasp Objects in a Cluttered Environment, M. Phil Thesis.
Department of Artificial Intelligence, University of Edinburgh, 1977.

46 A lolihedral Approximation for Swept Volume

IFigute IS. 'the WEDGE is a convex polyhedron used to approximate the volume swept out by a cuboid
aligned with the coordinate axes, as it rotates around the z axis, assuming the z axis does not penetrate the
cuboid.

Appendix 1. A Polyhedral Approximation for Swvept Volume

The swept volume is the volume occupied by a polyhedron over a set of configurations, e.g. along

some path. The swcpt volume over a range of translations can be computed using thc COIIZ algo-

rithm. In this appendix. we will limit our attention to computing a simple Polyhedral approximation

to the swept volume for rotations of a polyhedron around an arbitrary axis. This method is included

here for complcteness, it is not the best polyhedral approximation to the swept volume.

The swept volume approximation described here returns a list of convex polyhedra of' two type:

1. CYLINDER - a polyhedral approximation to a right circular cylinder.

47 A Polyhedral Approximation for Swept Volume

z

AXXRB(B)

Ayd~

X

2

Figure 16. Computing a polyhedral approximation to the swept volume under pure rota-
tion.

-7-

48 A Polyhedral Approximaton for Swept Volume

2. WEDGE - a polyhedral approximation to the volume swept out by a cuboid, aligned with

the coordinate axes, as it rotates around the z axis, Figure 15. It assumes that the z axis does

not penetrate the cuboid and that the rotation is less than ir.

"ihe input is a polyhedron, B, an axis of rotation which is the z axis of a reference frame and 9,

the angle of rotation. The first step is to rotate the frame around z so that the z axis goes through

the ccntroid of the projection of B on the (x, y)-planc of the frame. Compute an aligned bounding

rectangular solid for B, RB(B), whose dimensions are (Ax, Ay, Az). If the z axis does not pas

through the object, then if0 < 9.a1 v # then simply return a WEDGE enclosing the swept volume.

If the z axis penetrates RB(B). then if Ax > Ay, cut B using the planes x -- and =

and return a cylinder of radius v/y whose height is As and return the swept volumes of the pieces

of B beyond the central area. The procedure is similar if Ay > Ax. Figure 16 illustrates this

process. Here , is some user specified parameter, although it could be chosen to guarantee some

kind of error bound. if 0 > ,.m. then divide the rotation into a set of successive rotations each

returning a wedge.

